
Competition on Real-Parameter Single Objective Expensive

Optimization: A Simple Algorithm Without Approximation

Tapabrata Ray and Md Asafuddoula

Abstract—Real-world optimization problems often involve
expensive computer simulations to evaluate candidate solutions
such as via finite element analysis, computational fluid dynam-
ics, computational electromagnetics etc. In order to contain
the computational time of the optimization exercise within af-
fordable limits, approximations/surrogates are commonly used.
Numerous Surrogate Assisted Optimization (SAO) strategies have
been proposed over the years, one claiming superiority over
another evaluated using a set of test functions. In CEC-2014, a
competition was organized to assess the performance of various
solution strategies on a suite of 10D, 20D and 30D single
objective unconstrained optimization problems with limited
number of function evaluations(resembling computationally
expensive optimization problems). In this report we introduce
a simple algorithm to solve such problems without using
any form of approximation. The study sheds light on our
obsession with designer approaches and designer benchmarks.
While comprehensive results of other optimization strategies
are not available at this stage, we hope these results will offer
a sanity check of our ongoing efforts.

I. INTRODUCTION

Population based stochastic algorithms enjoyed great suc-

cess in solving a wide range of practical optimization

problems [1]. While population based stochastic algorithms

are a preferred choice in solving such complex nonlinear

problems, they require evaluation of numerous solutions prior

to convergence. The use of such algorithms in their native

form is rather restricted especially when candidate designs

are evaluated using computationally expensive analysis such

as Finite Element Methods (FEM), Computational Fluid Dy-

namics (CFD), and Computational Electro Magnetic (CEM)

etc. Development of new strategies to deal with computation-

ally expensive optimization problems has long been an area

of active research [2]. In order to contain the computational

time of the optimization exercise within affordable limits,

surrogates/approximations have been regularly used in the

past. Such surrogates are typically constructed using a set of

solutions. Once the surrogates are trained, they can be used

within any optimization algorithm in lieu of the expensive

simulation [3], [4]. Various forms of surrogates have been

reported in literature ranging from response surface methods

(RSM), neural network based methods [3] such as multilayer

perceptrons (MLP), radial basis function networks (RBFN),

Support Vector Regression [5], Kriging [6] etc. Significant

challenges in the context of surrogate assisted optimization

include a) means to choose appropriate number and location

of training samples b) type of the approximation model c)

Md Asafuddoula and Tapabrata Ray are with the School of Engineering
and Information Technology, University of New South Wales, Canberra,
Australia (email: md.asaf@student.adfa.edu.au, t.ray@adfa.edu.au).

schemes of validating the approximation model d) choice

of local or global approximation model e) means to retrain

surrogate models and finally schemes to manage them within

the framework of an optimization algorithm.

While there is a large volume of literature highlighting

benefits of SAO, there is very limited literature on a one-to-

one comparison across a range of problems. The problems

introduced as a part of the CEC-2014 competition provides

us an opportunity to compare the best of surrogate assisted

optimization schemes with ones which does not rely on

approximation. We refrain from commenting on the fact if

the problems resemble real life computationally expensive

optimization problems.

A simple hybrid algorithm is proposed to solve the above

set of benchmarks. The details of the approach are presented

in Section II, while the performance of the approach is

presented in Section III. Section IV concludes the paper with

final remarks.

II. PROPOSED STRATEGY

The proposed optimization strategy starts with an initial

population of N individuals generated using Latin Hypercube

Sampling (LHS) [7], [8]. The initial population is then

evaluated and sorted based on the fitness measure. A local

search fmincon is invoked from the best solution. If the local

search stops prematurely, a patternsearch [9], [10] is invoked

for the remaining number of function evaluations. It is clear,

that the algorithm is likely to be extremely fast as compared

to any SAO form. There is certainly the possibility of being

stuck at the local optimum.

The pseudocode of the algorithm is presented in Algo-

rithm 1 .

Algorithm 1 Proposed Optimization Procedure

Require: N {Population Size}
Require: FEmax {Maximum Number of Function Evaluations}
1: FE = 0

2: pop1 = Initialize()

3: Evaluate A(pop1)

4: Update(FE)

5: xbest=Find Best(pop1)

6: x0 = xbest {Best solution identified so far}
7: {xfinal, ffinal} = Fmincon(x0, FEmax-FE)

8: Update(FE)

9: x0 = xfinal {final solution obtain from fmincon search}
10: {xfinal, ffinal} = Patternsearch(x0 ,FEmax-FE)

11: Update(FE)

III. EXPERIMENTAL RESULTS

The test problems are based on eight popular test func-

tions. The test suites include unimodal / multi-modal, con-

tinuous / discrete and separable / non-separable functions

involving 10, 20 and 30 variables. The maximum number

of function evaluations are limited to 500, 1000, and 1500
for 10, 20 and 30 dimensional problems. It is also important

to highlight that no external parameter tuning experiments

were conducted to identify the most appropriate values for

the parameters listed below. Default MATLAB settings of

fmincon and patternsearch was used with the prescribed

number of function evaluations.

Table I provides the search settings used in this experiment

for fmincon and patternsearch optimization process.

TABLE I
SEARCH SETTINGS

POP Settings

LHS size D

fmincon Search Settings

Option Argument

Algorithm interior-point

Display iter

MaxFunEvals FEmax -D

TolFun 1e-8

patternsearch Settings

Algorithm interior-point

Display iter

MaxFunEvals FEmax -FE

TolFun 1e-8

*Default MATLAB settings used for other options

Table II provides the nature of the test problems, search

ranges and dimension of the problems. Most functions are

shifted and / or rotated. For a problem with D dimensions,

the global optimum is shifted by oi = [oi1, oi1,, oiD], and

oi is randomly distributed in [−10, 10]D .

A. Algorithm Complexity

The algorithmic complexity is computed for the problems

by calculating the mean time of completion to the completion

time of the given arithmetic operations. Table III shows the

complexity of the algorithm by T̂ and T̂/T0 where, T̂ is the

average computing time of 20 runs and T0 is the completion

time of the given arithmetic operations for 1000000 times.

The table also shows the best, worst, median, std completing

time of each problem for 20 runs.

B. Results of the problems

The results of our proposed approach are presented in

Table IV. The results are based on 20 independent runs. The

approach performed well on the first nine problems, while

for the remaining ones, the results are competitive(based

on our experience with other strategies). The computational

complexity is extremely low and possibly lower by several

orders of magnitude when compared with SAO forms.

IV. CONCLUSIONS

While computationally expensive optimization problems

are rarely solved without approximation, this paper tries to

challenge the norm. It raises an important question “Is the

TABLE II
PROBLEM DESCRIPTIONS

Prob. (Dim) Function Search Ranges

Prob-1

01 (10)
Shifted Sphere [-20,20]02 (20)

03 (30)

Prob-2

04 (10)
Ellipsoid [-20,20]05 (20)

06 (30)

Prob-3

07 (10)
Rotated Ellipsoid [-20,20]08 (20)

09 (30)

Prob-4

10 (10)
Shifted Step [-20,20]11 (20)

12 (30)

Prob-5

13 (10)
Shifted Ackley [-32,32]14 (20)

15 (30)

Prob-6

16 (10)

Shifted Griewank [-600,600]17 (20)

18 (30)

Prob-7

19 (10)
Shifted Rotated

Rosenbrock
[-20,20]20 (20)

21 (30)

Prob-8

22 (10)
Shifted Rotated

Rastrigin
[-20,20]23 (20)

24 (30)

TABLE III
COMPUTATIONAL COMPLEXITY

Function Computational Complexity

1 1.542

2 2.0614

3 2.8705

4 1.3557

5 2.4895

6 3.7844

7 1.4079

8 2.573

9 3.86

10 1.1896

11 2.1452

12 3.1869

13 1.5728

14 2.5905

15 3.6986

16 1.6388

17 2.6696

18 3.6372

19 1.5995

20 2.6727

21 3.6208

22 1.7015

23 2.8633

24 4.0533

field overly obsessed with the development of complex al-

gorithms designer algorithms and complex test problems de-

signer test functions ?”

An extremely simple algorithm is introduced in this paper

which uses a Latin Hypercube Sampling and two local search

strategies to look for the optimum. Standard MATLAB

implementation of Latin Hypercube Sampling, fminsearch

TABLE IV
FUNCTION VALUES ACHIEVED WHEN FES=500, FES=1000 AND FES=1500 FOR THE PROBLEMS WITH DECISION VARIABLES 10,20 AND 30

RESPECTIVELY. FUNCTION VALUE IS TRUNCATED TO ZERO FOR THE ERROR VALUE ≤ 1E-8.

Function Best Worst Median Mean Std

1 0 0 0 0 0

2 0 0 0 0 0

3 0 0 0 0 0

4 0 0 0 0 0

5 0 0 0 0 0

6 0 7.6095e-005 0 3.8965e-006 1.6995e-005

7 0 0 0 0 0

8 0 0 0 0 0

9 0 0.041532 0 0.0021149 0.0092785

10 0 7 2 2.45 2.2118

11 16 92 48.5 53.05 20.387

12 112 284 149 164.15 42.0554

13 6.1678 13.0471 10.8038 10.3416 2.1972

14 10.6986 14.5745 12.1641 12.4996 1.2718

15 13.7477 16.2164 14.8364 14.9734 0.74683

16 0 0.99084 0.018452 0.14055 0.30166

17 0 0.05153 0 0.004668 0.012768

18 0 0.23081 0 0.028644 0.059197

19 0.12163 6.5691 3.5187 3.5902 1.8257

20 8.9428 18.8331 14.2454 13.8768 2.1417

21 19.8303 79.1742 25.8207 29.7959 15.1251

22 32.9506 109.3217 70.5569 69.5315 24.9695

23 62.2775 221.8737 134.5738 140.0207 41.345

24 239.8141 370.1194 300.4736 306.4639 40.9999

and patternsearch have been used with its default parame-

ter settings. The computational complexity of the proposal

algorithm is extremely low. As expected, the algorithm is

capable of solving unimodal problems without any difficulty.

While, one might argue that it is not efficient for multimodal

problems, the results do appear competitive. It is important

to highlight that there are additional factors that come into

play with the use of approximations. Training a model

involves an inherent optimization exercise which is far from

trivial. Our preliminary investigation suggests, the proposed

algorithm offers decent solutions to multimodal test functions

even for higher dimensions. While comprehensive results of

surrogate/approximation assisted algorithms are unavailable

at this stage, we hope that this study would be of significant

value to the SAO community and in particular to reflect on

“how good are we in terms of surrogate assisted optimization

or use of approximations within an optimization algorithm

?”. We would like to leave the readers with the parting

thought “did we get the test functions right ?” or “did we

get the SAO algorithms right ?”.

REFERENCES

[1] J. Knowles, “Parego: A hybrid algorithm with on-line landscape
approximation for expensive multiobjective optimization problems,”
IEEE Transactions on Evolutionary Computation, vol. 10, no. 1, pp.
50–66, 2005.

[2] X. Lu, K. Tang, and X. Yao, “Classification-assisted differential
evolution for computationally expensive problems,” in IEEE congress

on Evolutionary Computation, 2011, pp. 1986–1993.
[3] Y. Jin, M. Husken, M. Olhofer, and B. Sendhoff, “Neural networks

for fitness approximation in evolutionary optimization,” in Knowledge

Incorporation in Evolutionary Computation, ser. Studies in Fuzziness
and Soft Computing, Y. Jin, Ed. Springer Berlin Heidelberg, 2005,
vol. 167, pp. 281–306.

[4] L. Shi and K. Rasheed, “A survey of fitness approximation methods
applied in evolutionary algorithms,” in Computational Intelligence

in Expensive Optimization Problems, ser. Adaptation Learning and
Optimization, Y. Tenne and C.-K. Goh, Eds. Springer Berlin
Heidelberg, 2010, vol. 2, pp. 3–28.

[5] X. Llor, K. Sastry, D. E. Goldberg, A. Gupta, and L. Lakshmi, “Com-
bating user fatigue in igas: partial ordering, support vector machines,
and synthetic fitness,” in Conference on Genetic and evolutionary

computation, 2005, pp. 1363–1370.
[6] H.-S. Chung and J. Alonso, “Multi-objective optimization using ap-

proximation model based genetic algorithms,” Technical report 2004-

4325, AIAA (2004).
[7] M. D. McKay, R. J. Beckmkan, and W. J. Conover, “A comparison of

three methods for selecting values of input variables in the analysis
of output from a computer code,” Technometrics, vol. 21, no. 2, pp.
239–245, 1979.

[8] D. H. Loughlin and S. R. Ranjithan, “Chance-constrained genetic
algorithms,” in Genetic Evolutionary Computation. San Francisco,
CA: Morgan Kaufmann, 1999, pp. 369–376.

[9] C. Audet and J. E. D. Jr., “Analysis of generalized pattern searches,”
SIAM Journal on Optimization, vol. 13, no. 3, p. 889903, 2003.

[10] A. R. Conn, N. I. M. Gould, and P. L. Toint, “A globally convergent
augmented lagrangian barrier algorithm for optimization with general
inequality constraints and simple bounds,” Mathematics of Computa-

tion, vol. 66, no. 217, p. 261288, 1997.

