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Abstract—Resource constrained project scheduling prob-
lem (RCPSP) is one of the classical problems in the area of
discrete optimization. In this paper we propose an algorithm for
solving RCPSP which relies on an adaptive insertion mutation
operator that targets different regions of the search space
and attempts to exploit neighborhoods via forward-backward
iterative local search. Furthermore, the algorithm makes use of
an archive to ensure better utilization of the schedule budget. The
performance of the approach is analyzed across various problem
complexities associated with J30, J60 and J120 full instance sets
of PSPLib with budgets of 1,000, 5,000 and 50,000 schedules. The
study provides insights on the performance of the algorithm i.e.
why the performance is good for particular instances and not as
good for others.

I. INTRODUCTION

The classical resource constrained project scheduling prob-
lem (RCPSP) is a combinatorial optimization problem which
belongs to the class of NP-hard problems. It extends the
commonly encountered task of project management to include
resource constraints which limit the number of tasks which can
be executed at any given time. Research on RCPSP is partic-
ularly important since such resource constrained problems are
encountered in almost every manufacturing environment.

Exact approaches such as linear programming [21] are
typically only used for smaller problem instances since the
computational time increases exponentially with the size of the
problem. This has prompted the development of heuristic and
meta-heuristic approaches. Heuristic approaches for RCPSP
include ones based on genetic algorithms [31], artificial
bee colony [15], particle swarm optimization [6], artificial
immune systems [2], ant colony optimization [24], scatter
search [9], tabu search [25], multi-agent optimization [32]
etc. In addition to such approaches there also exist a number
of priority rules/functions [17] which can be used as a rule-
of-thumb in the absence of sophisticated algorithms. Priority
rules are particularly useful in cases where cheaper, more
intuitive solutions are preferred over optimality, something
that is commonly seen in smaller manufacturing environments.
There exist countless algorithms within literature for RCPSP
therefore it is almost impossible to cover all within the scope
of this paper due to space limitations. However, the interested
reader can refer to [14] and [19] for a detailed analysis on the
state-of-the-art.

Fig. 1: Visualization of generated schedule.

In this paper, we propose a simple population based stochas-
tic algorithm for solving the RCPSP. The algorithm uses an
adaptive insertion operator which explores new regions by
traversing through infeasible regions of the search space. A
new region of the search space is then exploited using the well
established forward-backward iterative local search. Archives
are maintained to ensure only unique new solutions (activity
lists) are evaluated. Furthermore, to provide greater insights
on the performance of the algorithm, a detailed analysis is
undertaken across problem instances of J30, J60 and J120.
This study is particularly valuable as it establishes the link
between problem complexity and the performance of the
algorithm.

The rest of the paper is organized as follows. Section II gives
a background discussion on the problem. Section III describes
the proposed algorithm while section IV gives details on the
effect of the algorithm parameters. A detailed discussion on
the links between problem complexity and the performance of
the algorithm is presented in section V. Finally, section VI
summarizes the findings and lists several potential research
directions.

II. PROBLEM DEFINITION

The resource constrained project scheduling problem is clas-
sified as NP-hard. Each project consists of a set of activities
that need to be scheduled while considering precedence and
resource constraints. If activity j is a successor of activity i
then activity i must be completed before activity j can be
started. All such relationships among the order of activities
constitute the precedence constraints.

Each project is also assigned a set of renewable resources
which are available in given capacities for the entire duration



of the project. Each activity may require one of more of these
resources to be completed. While scheduling the activities,
the daily resource usage limits can not be exceeded, which
is referred to as the resource constraint. The overall goal of
the problem is to minimize the makespan, which refers to the
total duration from the start of first to the end of last scheduled
activity. The visualization of a schedule is given in Fig. 1.

III. ALGORITHM DETAILS

Following from the above discussion, we attempt to design
an algorithm which offers competitive and robust performance
across problems of different sizes and complexity. The follow-
ing sub-sections present the details of the proposed algorithm
(Algorithm 1).

A. Solution Representation

In this work we have adopted the activity list representation.
Each solution is a 1 x m (m=no. of activities) vector containing
all the activity ids (including dummy activities). The order
of the activities represents the priority of each activity. A
given solution is decoded using the serial Schedule Generation
Scheme (SGS) [18]. The serial SGS is used for both the
forward and backward schedules generated by the algorithm.
Generating a schedule involves assigning start and finish times
to activities based on the resource availability and precedence
constraints.

Algorithm 1 Proposed Algorithm for Solving RCPSP
1: Define: n: PopSize, ip: Insertion%, schmax: Total Schedules
2: pop: Population = GenerateInitialPop(n) {Refer Algorithm 2}
3: while scheval <= schmax do
4: p: Parents = ThreeWayTournamentSelection(pop)
5: for i = 1:n do
6: solmut = InsertionMutation(p, ip) {Refer Algorithm 3}
7: solls = ForwardBackwardIteration(solmut)
8: AddToPopulation(solls)
9: end for

10: popsorted = Sort(pop)
11: pop = Trim(popsorted)
12: end while

Algorithm 2 Initialization
1: Define: n:PopSize
2: for i = 1 to n do
3: Create 1xm Vector Containing Activity IDs
4: Randomly Shuffle the Solution Vector
5: Repair Solution
6: Generate Forward Schedule using Repaired Solution
7: Add solution to the Population
8: end for

B. Initial Population

The initialization (Algorithm 2) starts by generating a
vector of size m (m=no. of activities) containing all the activity
ids which are ordered from lowest to highest. This vector is
then randomly shuffled without taking into account any form
of precedence relationship resulting in a randomly initialized
population. Every solution is repaired using Algorithm 4
to conform to the precedence constraints. The precedence
feasible repaired solution is then evaluated using forward

Algorithm 3 Adaptive Insertion Mutation
1: Define: ip:Insertion Percentage, scheval:Schedules Evaluated, schmaxTotal

Schedules, m: Solution Size
2: numIns:Number of Insertions = m ∗ ip;
3: for i = 1 to numIns do
4: Randomly Select an Activity: l1: Location1
5: DiffL: Difference Left = l1; DiffR: Difference Right = m-l1;
6: Moveper : Percentage Movement = (1-(scheval/schmax))
7: w: Window = Moveper*m
8: Randomly generate: Moveprob: Movement Probability
9: if Moveprob >=0.5 OR DiffL = 0 then

10: if w> DiffR then
11: w = DiffR
12: end if
13: if w = 0 OR w = 1 then
14: l2: Location2 = l1+1
15: else
16: ub: Upper Bound=l1+w; lb:Lower Bound = l1+1;
17: l2 = Random Number between ub and lb (inclusive)
18: end if
19: else if Moveprob <0.5 OR DiffR = 0 then
20: if w > DiffL then
21: w = DiffL
22: end if
23: if w = 0 OR w = 1 then
24: l2 = l1-1
25: else
26: ub = l1-1; lb = l1-w;
27: l2 = Random Number between ub and lb (inclusive)
28: end if
29: end if
30: Move Activity at l1 to l2
31: end for
32: Repair Solution {Refer Algorithm 4}

Algorithm 4 Repair Mechanism
1: Define: solinf : Infeasible Solution, solf = ∅: Repaired Feasible Solution, m =

size(solinf ): Solution Size
2: for i = 1:m do
3: for j = 1:size(solinf ) do
4: if All predecessors of solinf [j] are in solf then
5: Insert solinf [j] into solf at location i
6: Remove activity at location j from solinf

7: break inner loop
8: end if
9: end for

10: end for

scheduling resulting in a feasible schedule that satisfies all
constraints of the RCPSP problem.

C. Selection

Parent selection is an important aspect that affects the
performance of all population based stochastic algorithms.
Parent selection and recombination operators work collectively
maintaining the fine balance between convergence and diver-
sity. In the proposed algorithm, a three way tournament is used
to identify parents that would participate in the generation of
offspring via insertion mutation. A three-way tournament is
more greedy as compared to a binary tournament and often
necessary to induce an appropriate selection pressure.

This works similar to the binary tournament selection but
with an additional solution considered in the tournament.
Among the three solutions the fittest is selected for mutation.

D. Adaptive Insertion Operator

The proposed algorithm makes use of an insertion opera-
tor (Algorithm 3) based on window of movement to determine
the new location of an activity. This was originally proposed



in [5]. A random activity is selected from the activity list,
and the available locations to the right and left of the activity
is identified. In earlier phases of the search, the chosen
activity can move across the entire span (left or right), while
progressively this movement is reduced. The rationale behind
this is that during the earlier generations one would want the
algorithm to be able to explore different regions of the search
space but in the later generations one would ideally want it to
just explore the neighborhood of the current solutions.

The maximum length of movement is expressed as (1 −
(scheval/schmax)). This is multiplied by the length of the
activity list to determine the actual number of slots (window)
a particular activity can jump on either side of its location.
Based on a random probability, the movement will either be
on the right or left of the activity’s location. If the window size
is greater than the number of slots available in the direction
of movement, then the window size is trimmed to be the
same as the number of available slots. It is important to
take note that after a jump, the solution might not satisfy
the precedence constraint and thus would require a repair
procedure to satisfy the feasibility. These infeasible moves
aid the algorithm to avoid getting stuck in local minima. The
user defined parameter Insertion% determines the number of
insertion operations that will be performed for each activity
list.

E. Local Search
All solutions generated using the mutation operation un-

dergo local search. The adaptive insertion mutation generates
solutions within promising regions of the search space and the
local search explores these regions in greater depth. The local
search procedure used in this study is based on the scheme
proposed by Li and Willis [22].

The local search procedure, referred in literature as forward-
backward iteration (FBI), performs an iterative forward and
backward scheduling process until no improvement is possible.
It begins by evaluating a solution using forward scheduling.
The activities are then sorted in ascending order by their finish
times (on the forward schedule) and a new activity list is
generated. This new activity list is evaluated using backward
scheduling. Following this, forward scheduling is applied on
a new activity list which is generated by sorting the activities
in ascending order based on their start times in the backward
schedule. This iterative procedure will only result in solutions
which have equal or better makespan in comparison to the
current solution. Each schedule generated using FBI is counted
in the function evaluations.

F. Replacement
After the mutation and local search, the population now

contains more than 2n solutions. The population is sorted
according to the makespan and the best n solutions are carried
forward to the next generation.

G. Repair Mechanism
A solution repair mechanism (Algorithm 4) is used to repair

any precedence infeasible solutions encountered during search.

To repair an infeasible solution (activity list) with m activities,
the procedure undertakes m passes over the activity list and
constructs a repaired solution by removing elements one by
one from the infeasible solution. In each pass, it will remove
the first activity that has all its predecessors scheduled (already
inserted into repaired solution) and add it to the repaired
activity list vector. This will continue until the infeasible
solution vector is completely empty and the repaired solution
vector is filled with m activities.

H. Activity List and Start Time Archives

Two separate archives are maintained for storing all the
activity lists and start-times encountered through the course
of evolution. The activity list archive stores all the solutions
evaluated so far. Each solution before being evaluated is
checked against the archive. If the solution exists within the
archive, it will not be evaluated and the local search will
terminate at that point. Since the evaluation budget is limited,
this mechanism ensures that each evaluation is on a new
unique solution.

A number of solutions are generated through local search.
All the solutions are added to the population. The start-times
for each evaluated solution are stored in an archive. If a
generated schedule has an exact match with any vector in the
start-time archive the corresponding activity list, the solution is
not added into the population. This ensures two things. Firstly,
the population will not have any repeated solutions both in-
terms of activity lists and schedules. Secondly, this prevents
the algorithm from wasting computational effort on schedules
which have already been explored.

IV. PARAMETER SETTINGS

A number of experiments were done to determine a suitable
population size and insertion percentage. Trial runs were done
with values from 10 to 30 (with intervals of 5) for population
size and 5 to 20% (with intervals of 5%) for insertion
percentage. This resulted in 20 different combinations. The
algorithm was run across all instances of J30, J60 and J120
for 1,000 schedules. The obtained results are given in Figure
2. The results indicate that population size of 10 and insertion
percentage of 5% give the best results (median) across major-
ity of the problems. Results for J30 fluctuate across different
parameters. Lower end of the parameter(both) values did not
seem to give favourable results. For J60 the combinations on
the lower left corner(subfigure (b)) give the best performance.
These combinations give pretty much the same performance
with slight but insignificant difference(≤ 0.01). For J120
population size of 10 and insertion percentage of 5% gave the
best results. Hence we chose this combination as it gives good
performance on J60 as well and reasonable performance on
J30. A smaller population size offers the algorithm to evolve
over more generations which appears to be more effective. A
lower value of insertion percentage seems to work better i.e.
maintains a balance between disruptive mutation and adequate
exploration.
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Fig. 2: Parameter effect on average percentage deviation

V. COMPUTATIONAL EXPERIMENTS

This section provides the details of the numerical exper-
iments. The algorithm was developed using the Java pro-
gramming language and all experiments were carried out
on a Windows 7 computer with Intel i7 3.4GHz CPU and
16gb RAM. The standard PSPLib test problems i.e. J30,
J60 and J120 [20] were used. J30 and J60 consist of 480
instances with 4 renewable resources and 30 and 60 non-
dummy activities, respectively. J120 consists of 600 instances
with 4 renewable resources and 120 non-dummy activities. For
each problem, the algorithm was run with stopping criteria
of 1,000, 5,000 and 50,000 schedules. The average deviation
from the optimal (for J30) and the average deviation from the
lower bound (for J60 and J120) were used to measure the
performance of the algorithm. All reported results are for 15
runs. The presence of the archive ensures that a solution is only
evaluated once even if it is encountered multiple times within
the course of evolution. This may cause the algorithm to get
stuck in some cases where it is not able to generate enough
unique solutions. This problem was only encountered with the
J30 instances with limit of 50,000 schedules. An additional
stopping criteria of 150,000 (3*50,000) repeated solutions
was put in place to ensure that the algorithm terminates if
it is no longer able to generate new unique solutions. While
this problem was not encountered with J60 and J120, for
consistency the same stopping criteria was also put in place
for both these problems as well for 50,000 schedule limit.

A. Problem Complexity Analysis

The test problems used for this paper are taken from the
Project Scheduling Problem Library (PSPLib) [20] which are
available online. In this section, we will discuss the factors
that contribute to the complexity of problems within PSPLib
and how it affects the performance of the proposed algorithm.

1) Size: Problem size refers to the number of activities that
need to be scheduled for a given instance. For J30, the optimal
values are known, while for the other two, only the lower
bounds are available. Optimal values for some instances of
J60 and J120 are known, however, for comparison usually the
lower bounds are used. As seen from our results, the average
deviation increases significantly as the problem size increases.

2) Problem Parameters: The problems within PSPLib are
constructed using 3 main parameters. These are network com-
plexity (NC), resource factor (RF) and resource strength (RS).
The network complexity reflects the average number of im-
mediate successors of an activity [12]. The resource factor
reflects the average percentage of resources required per
activity [12]. The resource strength reflects the scarceness
of the resource capacities [12].

Based on our observations, the network complexity had little
to no effect on the problem difficulty. A high resource factor
combined with low resource strength resulted in the most
difficult instances for our algorithm to solve. This observation
is in correlation with what has been previously discussed in
literature with respect to problem complexity. As mentioned
by Dorndorf [10], a lower resource strength indicates max-
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Fig. 3: Performance analysis (5,000 Schedules) of the proposed algorithm for J30 with respect to optimal. RS: Resource
Strength, RF : Resource Factor, NC: Network Complexity.
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Fig. 4: Performance analysis (5,000 Schedules) of the proposed algorithm for J30 with respect to lower bounds. RS: Resource
Strength, RF : Resource Factor, NC: Network Complexity.

imal tightness. This results from minimal feasible resource
availability. The complexity is increased when low resource
strength is combined with high resource factor. In this situa-
tion, a limited availability is combined with high demand for
resources. This tightness makes the problem landscape signifi-

cantly difficult to navigate for an algorithm and introduces the
possibility of being stuck at the local optima.

The critical path lower bounds are the project makespans
calculated by relaxing all the resource constraints. This is a
fairly trivial task. If one were to look at the difference between
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Fig. 6: Performance analysis (5,000 Schedules) of the proposed algorithm for J120 with respect to lower bounds. RS: Resource
Strength, RF : Resource Factor, NC: Network Complexity.

the lower bounds and the optimal makespans for J30, the effect
of the above mentioned variables would be very clear. The
deviation between the optimal and lower bound values are
significantly higher for instances where the resource factor is
high (0.75, 1.00) and the resource strength is low (0.2). A

deviation of 0 from the lower bound makes the problem easy
to solve, since it is the same as calculating lower bound. A
higher deviation from the lower bound represents a stronger
effect of the resource constraints on the problem making it
much more difficult to solve.



We have illustrated the above using figures 3, 4, 5,
6. Subplot 1 (top) of Figure 3 shows the percentage devi-
ation between the optimal and lower bound makespans for
J30. Since each parameter setting for the PSPLib has 10
representative instances, the highlighted regions (in yellow)
indicate sets which have 50% of instances having greater than
50% deviation between optimal and lower bounds. Subplot
2 (middle) shows the performance of our algorithm in terms
of average deviation from the optimal for 5,000 schedules with
15 runs. Subplot 3 shows the parameter settings for the J30
problems across all 480 instances. The highlighted regions (in
yellow) indicate the parameter settings for which our algorithm
faced difficulty in solving. Our algorithm had difficulty in
solving problems which had a low resource strength (0.2)
and high resource factor (0.75, 1.00). These instances are
considered difficult to solve since the effect of the resource
constraints are stronger. Subplot 1 is in correlation with the
other 2 plots since the deviations between optimal and lower
bounds are higher for instances in which resource strength is
low and resource factor is high. There is one outlier which
can be seen in subplot 3. For this case the resource strength
is 0.2 (low) and the resource factor is 0.5 which can be
considered relatively high. Our algorithm did not have trouble
solving other instances in which this same parameter setting
was used which may lead us to believe that this can be due
to the effect of the random seed.

Figure 4 presents the same analysis using the lower
bounds for J30. Subplot 1 (top) shows the performance of our
algorithm in terms of average deviation from the lower bounds
for 5,000 schedules. Subplot 2 shows the parameter settings
used across the different J30 instances with the highlighted
regions indicating parameter settings for sets in which our
algorithm was able to achieve deviation of 0 with greater than
80% of the instances. Here we are highlighting instance sets
which would be easiest to solve. One can observe that 12 of
the 13 highlighted regions have high resource strength (1.00).
This indicates high resource availability. We can conclude
that for J30, when the resource strength is high, the effect of
resource factor is minimal. When availability is high, the level
of demand had minimum effect. Most algorithms including
ours should be able to solve these instances without much
trouble.

Figure 5 illustrates the same concept with J60. Subplot
1 shows the performance of our algorithm in terms of the
average deviation from the lower bounds for 5,000 schedules.
Subplot 2 shows the parameters settings used across the differ-
ent problem instances with the highlighted regions (in yellow)
indicating sets for which our algorithm was able to achieve
deviation of 0 with greater than 80% of the instances. 21 of
the 22 highlighted regions have high resource strength (0.70 or
1.00) indicating high availability of resources which implies a
weaker resource constraint. This factor makes these instances
easy to solve.

For J120, the same analysis is illustrated in Figure 6.
Subplot 1 shows the performance of our algorithm in terms
of the average deviation from the lower bounds for 5,000

schedules. Subplot 2 shows the parameters settings used across
the different problem instances with the highlighted regions (in
yellow) indicating sets for which our algorithm was able to
achieve deviation of 0 with greater than 50% of the instances.
The threshold was reduced to 50% due to the added difficulty
incurred as a result of the increase in problem size. These
highlighted sets represent problems which would be easiest
to solve since the resource constraints are weaker. It must be
noted that there may exist other instance sets which can also be
classified as “easy”, however this will be difficult to determine
in the absence of information on the true optimal makespan.
Therefore we are limiting our classification of “easy” to those
instances where we were able to get deviation of 0.

In the above discussion, we have established the links
between problem complexity and the performance of the
proposed algorithm. Critical path lower bounds, networks
complexity, resource strength and resource factors were used
to assess problem complexity. This information can be used
to gauge the difficulty associated in solving such problems.

TABLE II: Comparison for J30
Authors Schedules

1,000 5,000 50,000
Mendes et al. [23] (2009) 0.06 0.02 0.01
Kochetov and Stolyar [16] (2003) 0.10 0.04 0.00
Debels and Vanhoucke [8] (2007) 0.12 0.04 0.02
Agarwal et al. [1] (2011) 0.13 0.10 –
Zamani [31] (2013) 0.14 0.04 0.00
Chen et al. [7] (2010) 0.14 0.06 0.01
Zheng and Wang [32] (2015) 0.17 0.06 0.01
This Research 0.19 0.07 0.02
Alcaraz et al. [4] (2004) 0.25 0.06 0.03
Tormos and Lova [26] (2003) 0.25 0.13 0.05
Valls et al. [29] (2008) 0.27 0.06 0.02
Debels et al. [9] (2006) 0.27 0.11 0.01
Chen [6] (2011) 0.29 0.14 0.04
Tormos and Lova [27] (2001) 0.30 0.16 0.07
Alcaraz and Maroto [3] (2001) 0.33 0.12 -
Jia and Seo [15] (2013) 0.34 0.17 –
Valls et al. [28] (2005) 0.34 0.20 0.02
Fang and Wang [11] (2012) 0.36 0.21 0.18
Wang and Fang [30] (2012) 0.38 0.14 –
Hartmann [13] (2002) 0.38 0.22 0.08
Nonobe and Ibaraki [25] (2002) 0.46 0.16 0.05

B. Comparison with Existing Approaches

The results of the proposed algorithm are presented in Table
I. The median and mean performance across the 15 runs are
almost the same for all cases highlighting stable performance.
The standard deviation is consistently low. The results have
also consistently improved with the increase in budget.

The performance of the proposed algorithm was compared
with 20 other approaches from literature. Tables II, III and
IV provide the comparisons for J30, J60 and J120 instances
respectively. We have used the results for our best run for
comparison. Methods are ranked according to performance
on 1,000 evaluations since some of the methods in literature
have not reported results for 50,000 evaluations. For J30,
our algorithm is ranked 8th for 1,000 evaluations and in a
non-dominated sense it is ranked 7th overall (i.e. completely



TABLE I: Results for the proposed algorithm in terms of Average Percentage Deviation from Optimal (J30) and Lower
Bound (J60, J120).

Problem Schedules Mean Std Dev. Best Median Worst Mean Run-Time

J30
1,000 0.24 0.02 0.19 0.23 0.28 0.13s
5,000 0.09 0.01 0.07 0.09 0.12 0.96s
50,000 0.03 0.01 0.02 0.03 0.04 381.70s

J60
1,000 11.90 0.04 11.83 11.89 11.96 0.33s
5,000 11.31 0.03 11.25 11.32 11.36 2.06s
50,000 10.91 0.03 10.87 10.90 10.95 366.47s

J120
1,000 35.83 0.05 35.75 35.82 35.94 1.03s
5,000 34.08 0.03 34.04 34.09 34.14 5.84s
50,000 32.52 0.06 32.45 32.50 32.65 480.22s

TABLE III: Comparison for J60
Authors Schedules

1,000 5,000 50,000
Debels and Vanhoucke [8] (2007) 11.31 10.95 10.68
Zamani [31] (2013) 11.33 10.94 10.65
Fang and Wang [11] (2012) 11.44 10.87 10.66
Agarwal et al. [1] (2011) 11.51 11.29 –
Valls et al. [29] (2008) 11.56 11.10 10.73
Zheng and Wang [32] (2015) 11.67 10.84 10.64
Kochetov and Stolyar [16] (2003) 11.71 11.17 10.74
Mendes et al. [23] (2009) 11.72 11.04 10.67
Debels et al. [9] (2006) 11.73 11.10 10.71
Chen et al. [7] (2010) 11.75 10.98 10.67
This Research 11.83 11.25 10.87
Tormos and Lova [26] (2003) 11.88 11.62 11.36
Alcaraz et al. [4] (2004) 11.89 11.19 10.84
Wang and Fang [30] (2012) 11.97 11.43 –
Chen [6] (2011) 12.03 11.43 11.00
Tormos and Lova [27] (2001) 12.18 11.87 11.54
Valls et al. [28] (2005) 12.21 11.27 10.74
Hartmann [13] (2002) 12.21 11.70 11.21
Jia and Seo [15] (2013) 12.35 11.96 –
Alcaraz and Maroto [3] (2001) 12.57 11.86 -
Nonobe and Ibaraki [25] (2002) 12.97 12.18 11.58

TABLE IV: Comparison for J120
Authors Schedules

1,000 5,000 50,000
Debels and Vanhoucke [8] (2007) 33.55 32.18 30.69
Zheng and Wang [32] (2015) 33.87 32.64 31.02
Zamani [31] (2013) 34.02 32.89 31.30
Valls et al. [29] (2008) 34.07 32.54 31.24
Agarwal et al. [1] (2011) 34.65 34.15 –
Kochetov and Stolyar [16] (2003) 34.74 33.36 32.06
Fang and Wang [11] (2012) 34.83 33.20 31.11
Tormos and Lova [26] (2003) 35.01 34.41 33.71
Valls et al. [28] (2005) 35.18 34.02 32.81
Chen et al. [7] (2010) 35.19 32.48 30.56
Debels et al. [9] (2006) 35.22 33.10 31.57
Wang and Fang [30] (2012) 35.44 33.61 –
Chen [6] (2011) 35.71 33.88 32.89
This Research 35.75 34.04 32.45
Mendes et al. [23] (2009) 35.87 33.03 31.44
Tormos and Lova [27] (2001) 36.49 35.81 35.01
Alcaraz et al. [4] (2004) 36.53 33.91 31.49
Jia and Seo [15] (2013) 36.84 35.79 –
Hartmann [13] (2002) 37.19 35.39 33.21
Alcaraz and Maroto [3] (2001) 39.36 36.57 –
Nonobe and Ibaraki [25] (2002) 40.86 37.88 35.85

dominated by 6 other methods). For J60, it is ranked 11th for
1,000 evaluations and in a non-dominated sense it is ranked
10th overall (i.e. completely dominated by 9 other methods).
For J120, it is ranked 14th for 1,000 evaluations and 10th

overall in a non-dominated sense. It must be noted that a
number of methods [8, 6, 31] included in our comparison
have not used consistent parameter settings across problems
and schedule limits which gives them unfair advantage. It
must also be considered that majority of the algorithms ranked
better than ours require more parameters in comparison to our
approach.

VI. CONCLUSION

In this paper, a population based stochastic algorithm was
proposed for solving the single mode resource constrained
project scheduling problem. The algorithm used an adaptive
insertion operator for recombination which in the earlier
generations allowed for global exploration and in the lat-
ter generations allowed exploitation of promising regions.
Forward-backward iteration was also used for local search.
The results delivered by the algorithm are competitive with
existing approaches. A possible shortcoming with the approach
is that the run-time is significantly high for 50,000 evaluations.
This is because the algorithm only evaluates unique solutions.
While this factor may improve accuracy, it adds to significant
runtime for 50,000 evaluations. The link between problem
complexity and algorithm performance is established which
explains exactly why the performance of the algorithm is
good or bad for certain instances and more importantly such
information can be used to choose appropriate schemes.

Future research would be targeted towards extending our
algorithm for other variants of the RCPSP. In particular, the
focus will be on practical and realistic constraints.
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